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Surface hydrodynamics on a freely standing layer of a polymer solution

M. Hernández-Contreras,1,* M. W. Kim,1,2 and P. Pincus1
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Korea Advanced Institute of Science and Technology, P.O. Box 201, Taejon 305-705, Korea
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The dispersion relation and the power spectrum of the surface modes on a surface-active, freely standing
film of a concentrated polymer solution are studied with a two-component fluid model of a viscoelastic
material. The diagram of bending modes is obtained from an asymptotic analysis of the dispersion equation
when the bending rigidity modulus is the main elastic effect on the layer interface. The resulting dynamical
structure factor provides the characteristic squeezing and undulation surface modes of the interfaces driven by
thermal fluctuations or by a weak external perturbation. The effect of interfacial and bulk elastic properties on
the power spectrum of the scattered light is studied. In the regime of an elastic solution, finite-thickness effects
and bulk elastic properties of the layer sustain a train of elastic peaks when the wavelength of thermal
fluctuations is comparable to the thickness of the layer. Interfacial elasticity properties increase the strength and
shift all resonance frequency peaks producing a less intense quasielastic spectrum around zero frequency.
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I. INTRODUCTION

Surface dynamics on viscoelastic films are a subjec
much current interest@1–3#. They play an important role in
the stability of emulsions, foams, in the process of hydro
namic relaxation of biological membranes, as well as
other technological applications@4–6#. Modern techniques
including inelastic light scattering provide accurate inform
tion about the surface hydrodynamics of polymer solutio
and measure the spectral intensityS(k,w) of the scattered
light, of frequencyw and magnitude of wave vectork, by the
interface roughness and thermal fluctuations@1#. The experi-
mental investigation of the surface modes in clearly char
terized film systems made of polyethylene oxide in water a
polyisobutylene in organic solvents have posed intrigu
questions concerning the effect of solvent quality, bulk sh
elasticity, surface tension, and interfacial elasticity on
interfacial roughness fluctuations@2,3,7–9#.

Theoretical studies of the surface dynamics on conc
trated polymer solutions have mostly been based on the
fluid model of a supported viscoelastic polymer solution in
solvent that was predicted to exhibit a crossover from ca
lary to viscoelastic surface fluctuations as a function of po
mer concentration@10–12#, a prediction that has been re
cently verified experimentally@2,7–9#. Moreover, this
approach was later extended including the effect of inte
cial elasticity on capillary and elastic Rayleigh modes@12#.
The hydrodynamic modes of a very thin layer of viscoelas
materials were studied@13#, finite-thickness effects on th
surface modes on a freely standing viscoelastic soap
@14#, and polymer gels@15# were also considered. An impor
tant class of viscoelastic polymer films that can be found

*Also at Departamento de Fı´sica, Centro de Investigacio´n y Estu-
dios Avanzados del IPN, Apartado. Postal 14-740, Me´xico D.F.,
Mexico.
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liquid-vapor interfaces includes insoluble liquid films o
polymeric surfactants such as those found in amphiph
membranes of very low-surface tension and low-bending
ergy @5,16,17#.

The energy required in these systems to create a defo
ing surface wave include a corresponding restoring force
to the mean bending elastic modulus. In this paper we ext
the two-fluid-model approach to include the elastic bend
rigidity in the description of the surface hydrodynamics
liquid films such as it is found in amphiphilic membranes
surfactant materials. We address the problem of determin
the exact dispersion relation of the surface modes due to
bending rigidity modulus, surface tension, and interfac
elasticity of a symmetric freely standing film of a viscoela
tic monolayer. An asymptotic analysis of the dispersion
lation provides the diagram of surface modes when the be
ing rigidity modulus is the only elastic parameter th
determines the structure of the interfaces and the shear
tic modulus, the bulk property of the layer. The diagrams
the squeezing and undulation surface modes show a cr
over from bending finite-thickness propagating modes o
dissipative overdamped to elastic waves when the poly
concentration is increased. For a layer constituted by
simple Newtonian fluid with bending rigidity the maximum
of the power spectrum is more enhanced than in the cas
a viscoelastic layer.

We show that for a wavelength comparable to the thi
ness of the viscoelastic layer, in the absence of a bend
rigidity modulus and far into the elastic regime, bulk she
elasticity sustains a series of peaks in the power spectr
Low wave vectors tend to merge these peaks into a sin
broad peak. This spectral property may be observed by
present light-scattering techniques in a sufficiently conc
trated layer of viscoelastic material. In the next section
introduce the viscoelastic layer model. The hydrodynam
theory of the thermal fluctuations at the interfaces is given
Sec. III. The relevant hydrodynamic modes of the therm
4319 © 1999 The American Physical Society
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fluctuations and power spectrum are given in Sec. IV and
physical description of them is given in Sec. V. Section VI
a brief summary.

II. MODEL POLYMER FILM

Figure 1 shows our model of a viscoelastic layer that c
sists of two infinite interfaces in theX andY directions that
are separated by a mean distanceh. We assume that the
interfaces are identical and contain a polymer solution
contact with a vapor in a symmetric 1-1 electrolyte soluti
of monovalent ions of charge6e released in the solvent of
dielectric constantes at concentrationn. Since there is sym-
metry in theXY plane we assume the fluctuations are ind
pendent of the coordinateY and take the surface wave prop
gating with wave vectork in the X direction. We denote by
j(x,t) and z(x,t) the shape of the interface in the norm
and lateral displacements from its equilibrium configurat
at time t. We think of the two interfaces as charged elas
membranes with adsorbed ions or ionic amphiphilic m
ecules that provide an interfacial elasticitye with the surface
tensiong, and the curvature elastic deformation energyK
determines the equilibrium shape configuration of the in
face.

In thermodynamic equilibrium, the thickness of a lay
results from a balance of the direct interactions between
interfaces as given by the repulsive electrostatic double-la
forces of the membranes and the conventional, nonretar
attractive Van der Waals interactionWd52H(6ph3)21,
whereH is the Hamaker constant for water-hydrocarbon c
tact typically having the value 6310221 J. Thus, the force is
approximately given by

Pd~h!564kBTnA1e2kh1Wd . ~1!

Here the first term accounts for the electrostatic interac
of two flat and weakly overlapping double layers; the ran
of interaction is given by the inverse Debye lengthk

FIG. 1. Geometry of a symmetric viscoelastic polymer layer
thicknessh. The equilibrium interface configurations correspond
the dashed lines.~a! Squeezing and~b! undulatory modes.
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5A8pIn whereI 5e2/eskBT is the Bjerrum length withkB
the Boltzmann constant andT the temperature. In Eq.~1!, A1
is a function of the surface potentialc0 given by
tanh(ec0/4kBT). On the other side, the elastic properties o
surface are given by the viscoelastic free energy of an in
face deformation that has three contributions,

F5
1

2Ea
KS ]2j

]x2 1
]2j

]y2D 2

dS1
1

2Ea
gF S ]j

]xD 2

1S ]j

]yD 2G2

dS

1
1

2Ea
eF S ]z

]xD 2

1S ]z

]yD 2G2

dS. ~2!

The first term in Eq.~2! is the curvature free energy of a
elastic membrane with rigidityK, and the second term de
scribes the coupling of a change in unit areaa of deformation
with a corresponding change in volume@18#. Both terms
determine the strength of the deformation of the interfa
due to fluctuations in the vertical positions of the adsorb
molecules. The third term is the free energy associated w
fluctuations of the position of molecules in the plane of t
interface with interfacial elasticity moduluse, which is re-
lated to the concentration of adsorbed material@19#.

III. EQUATIONS OF MOTION
AND BOUNDARY CONDITIONS

In this section we quote the main results of the tw
coupled fluid-model approach for the description of the h
drodynamics of the surface wave of a viscoelastic medium
a polymeric material. The equations of motion of the velo
ity field v of the fluid and the displacement fieldu of the
polymer @4,21# can be written in the form

rs

]v

]t
5“•~s(s)1M !2rs“W1fI~v,u̇!,

rp

]2u

]t2
5“•~s(p)1M !2rp“W2fI~v,u̇!. ~3!

rs andrp denote the solvent and polymer densities,s(s) and
s(p) are the local solvent and polymer stress tensors, anfI

5C1(u̇2v) is the local polymer-solvent coupling term. Th
proportionality constant scales asC15hs / l , where l is the
mesh size of the polymer network andhs is the solvent shea
viscosity. On the other hand, the strain tensors are given
@22#,

si j
(s)5hsS ]v i

]xj
1

]v j

]xi
D2psd i j ,

si j
(p)5E~ t !S ]ui

]xj
1

]uj

]xi
D1S F~ t !2

2

3
E~ t ! D @“•u#d i j .

~4!

ps is the solvent hydrostatic pressure,v i is thei th component
of the solvent velocity field,E(t) andF(t) denote the com-
plex shear and compressional moduli of the polymer n
work, andui is the i th component of the polymer networ
displacement field. The direct interactions are embodied
the Maxwell stress tensorM (x,z,t) and the Van der Waals

f



a
ac
ef

n

et

ee

cit
w

f t
E

ib

n

U
r

,
n
e
tia

e

o-

d-

ces

-
ces

ript
a-
er-
e
dy-

ur-

di-

tion
tion
n
wer

s
ess

PRE 60 4321SURFACE HYDRODYNAMICS ON A FREELY STANDING . . .
potentialW(x,z,t) @4,14#. The contributionW(x,z,t) is the
sum of all long-range Van der Waals interactions between
particles in the fluid and between the particles in the interf
with others in the solution. Following the procedure of R
@4# we can formulate Eq.~3! in a different manner.

In the infinite coupling limit, v→u̇, the Fourier and
Laplace transform of Eq.~3! reduces to an effective equatio
of motion,

iwrv5“•s~w!, ~5!

where now

si j ~w!5h~w!S ]v i

]xj
1

]v j

]xi
D2P~w!d i j , ~6!

r5rs1rp , i 5A21,

h~w!5hs1E~w!/ iw, ~7!

and

P~w!5ps~w!2@F~w!2 2
3 E~w!#@“•v~w!#/ iw1Peff .

~8!

Due to the high compressibility modulus of the polymer n
work, the second contribution toP(w) in the last equation,
Eq. ~8!, is small compared tops(w). Therefore, it will be
neglected in the subsequent expressions. The third term
the right-hand side of Equation~8!, Peff , is the effective
pressure contribution due to the direct interactions betw
the two interfaces and is determined in@4#. Its specific form
enters only through the boundary conditions that the velo
field v satisfies at the interfaces and will be provided belo
Since we are assuming that the speed of propagation o
surface wave is small compared to the speed of sound,
~5!, it should also be complemented with the imcompress
fluid condition

“•v50. ~9!

Equations~5! and ~9! provide the hydrodynamic descriptio
of the surface modes in terms of the velocity fieldv that is
subject to the boundary conditions at the free interfaces.
ing Eqs.~1! and~2!, one can write for the effective force pe
unit area in the normal direction to the membrane@4,20#

p05ps1g
]2j

]x2 1K
]4j

]x4 2Pd8~h!dj12h
]vz

]z
, ~10!

wherePd8(h)[dPd(h)/dh, dj is the thickness of the layer
andp05P0ei (kx1wt), a weakly applied external perturbatio
of constant strengthP0. A surface-active material on th
liquid interfaces implies the existence of in-plane tangen
stress, which satisfies the following boundary condition:

szx5e
]2z

]x2 , z56
h

2
, ~11!

where e is the interfacial elasticity of the membrane. Th
normal coordinate to the interface is represented byz5h/2
1j(x,y,t), wherej is small compared toh/2. j(t) andz(t)
ll
e
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are related, respectively, to the local profile velocity comp
nents as j̇ I ,II (t)'vz(x,z56h/2,t) and ż(t)'vx(x,z5
6h/2,t).

The most general solution of Eqs.~5! and~9! is a station-
ary wave that satisfies the asymptotic limitv(w)→0 as z
→6` and has the form@23#

vx5$ ik@Asinh~kz!1B cosh~kz!#

2q@C cosh~qz!1D sinh~qz!#%ei (kx1wt),

vz5k$A cosh~kz!1B sinh~kz!

1 i @C sinh~qz!1D cosh~qz!#%ei (kx1wt)

ps52 iwr@Asinh~kz!1B cosh~kz!#ei (kx1wt), ~12!

where the constantsA,B,C,D, and the value of the wave
vectorq should be determined from the above given boun
ary conditions, Eqs.~10! and ~11!.

The thermal waves described by Eq.~12! embody two
types of a liquid motion. One may observe that the interfa
move out of phase in the normal directionẑ to the layer, so
that the components satisfyvz(x,z,t)52vz(x,2z,t) and
vx(x,z,t)5vx(x,2z,t). This is called the squeezing relax
ation mode. On the other hand, when the two interfa
move parallel to the normal direction so thatvz(x,z,t)
5vz(x,2z,t) and vx(x,z,t)52vx(x,2z,t) one encounters
the so-called undulatory mode. From now on, supersc
letters ‘‘s’’ and ‘‘ u’’ denote the squeezing and the undul
tory mode, respectively. The above-displayed parity prop
ties of the velocity components with respect to coordinatz
allow one to study separately each of the two relaxation
namics of a liquid motion on the layer.

IV. POWER SPECTRUM OF SQUEEZING
AND UNDULATORY MODES

The application of a weak external pressurep0(x,y,t) ẑ on
the interface contribute to the deformation energy of the s
face as2*aj(x,y,t)p0(x,y,t)dS. Therefore, at first order in
p0(x,y,t) linear-response theory@1# allows us to find the
general form of the interface deformation in the normal
rection, namely,

j~x,t !5E
a
E

0

`

x~x2x8,y2y8,t!p0~x8,y8,t2t!dtdS8.

~13!

The Fourier and Laplace transformed response func
x(k,w) is related to the surface displacement autocorrela
function ^j(k,t)j(k,0)& through the fluctuation-dissipatio
theorem, which provides the exact expression of the po
spectrumS(k,w) of the scattered light

S~k,w!5
kBT

pw
Im@x#. ~14!

The relaxation functionx is related to both dynamical mode
discussed above through the amplitudes of the thickn
variation of a polymer film, i.e.,
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djs5xsP05 1
2 ~j I2j II !

dju5xuP05 1
2 ~j I1j II !. ~15!

We will describe briefly the procedure to determine t
response functionsxs andxu that are involved in the exac
expression of the power spectrumS(k,w) for the symmetric
layer case. We have seen above that for the squeezing m
A5D50 and, therefore,C andB should have a finite value
Thus, we replace the velocity components of Eq.~12! in the
boundary conditions as given by Eqs.~10! and ~11! from
which we obtain two equations for the two unknown co
stants,C and B, in terms of the strengthP0 of the weakly
applied external perturbation. We find

B5
2P0w2

Ds~k,w! F2n~q21k2!sinhS qh

2 D1e
k2q

iw
coshS qh

2 D G ,
C5

P0w2

Ds~k,w! F2nik2 sinhS qh

2 D2e
k3

w
coshS hk

2 D G , ~16!

and

Ds~k,w!5@2w212in~w!k2w#22w2Fwa
21

e

r
qk2 cothS hq

2 D
24n~w!2k3q tanhS hk

2 D cothS hq

2 D G
1

ek2wa
2

r Fq cothS hq

2 D2k cothS hk

2 D G , ~17!

wa
25tanhS hk

2 Dwc
2,

wc
25@gk31Kk522kPd8~h!#

1

r
, ~18!

q25k21
iw

n~w!
, ~19!

with n(w)5h(w)/r. The functionDs(k,w) is the dispersion
relation of the squeezing mode as given by the two-fl
model of a viscoelastic material. The viscoelastic proper
of the polymer solution are set in terms of the comp
frequency-dependent shear viscosityh(w). Equation ~17!
corresponds to the dispersion relation of capillary waves
Newtonian liquid @22# having the viscosityhs . A simple
model for the complex shear viscocity is the Maxwell mod
of a single chain relaxation timet of entanglements@h(w)
5hs1Et/(11 iwt)#, which predicts a crossover from a
interfacial capillary wave mode at low bulk-volume conce
trations of a polymer solution to a viscoelastic dissipat
mode at high concentration@10#. Recently, these prediction
of the two-fluid model have been proved experimentally
a very thin polymer film@7–9#. These experimental finding
and the theoretical analysis@10–13# correspond to the limit
h→` of a single fluctuating monolayer in this context of
finite thickness layer model.
de

-

d
s

a

l

-

r

The power spectrum is determined once we findxs. We
now use the results ofB andC of Eq. ~16! in Eq. ~15! for xs

from which we get

xs5

k tanhS hk

2 D
rDs~k,w!

H 2
ek2

r Fq cothS hq

2 D2k cothS hk

2 D G1w2J .

~20!

For the undulatory mode we need to consider now the c
B5C50 in order to satisfy the symmetry requirements
the components of the velocity when changing the sign
the coordinatez. Using similar methods we obtain the rela
ation function of the undulatory mode,

xu5

k cothS hk

2 D
rDu~k,w!

H 2
ek2

r Fq tanhS hq

2 D2k tanhS hk

2 D G1w2J ,

~21!

where the dispersion relation is now given by

Du~k,w!5@2w212in~w!k2w#2

2w2Fwb
21

e

r
qk2 tanhS hq

2 D
24n~w!2k3q cothS hk

2 D tanhS hq

2 D G
1

ek2wb
2

r Fq tanhS hq

2 D2k tanhS hk

2 D G , ~22!

wb
25cothS hk

2 Dwc
2 . ~23!

In the undulatory mode-dispersion relation Eq.~22!, the
disjoining pressure plays no role, which follows from th
fact that in this case there is no thickness variation and he
no coupling to the direct interaction. Both Eqs.~17! and~22!
are equivalent to the dispersion relations of Joosten@20#
when K50, and the complex shear viscosityh(w) is re-
placed by a real constant valuehs in order to conform to his
model of a surface-active, but finite-thickness soap film in
Newtonian solvent with viscosityhs . Therefore, our results
in Eqs. ~17! and ~22! constitute their generalization for
viscoelastic layer of a polymer solution.

The single interface limit of a semi-infinite medium
obtained from either Eqs.~17!–~19! or Eqs. ~22! and ~23!
with h→`; the relaxation functionxsin is given now by

xsin5
k

rDsin~k,w! F2
ek2

r
~q2k!1w2G , ~24!

where the corresponding dispersion relation
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Dsin~k,w!5~2w212ink2w!22w2S gk31Kk5

r
1

eqk2

r

24n2k3qD1
ek2

r
~q2k!Fgk31Kk5

r G . ~25!

Equation~25! is a generalization of the dispersion relation
Hardenet al. @10# ~in their work, K ande are zero!, and of
Wang and Huang@12# ~case ofK50, see Appendix A! for a
surface-active film on a semi-infinite medium of a polym
solution with a finite-bending modulusK. It also generalizes
the dispersion relation of Lucassen and Lucassen-Reyn
@19# for a monolayer without viscoelastic properties a
elastic constantse andg ~see Appendix B!. Equations~20!
and~21!–~24! could be relevant to the study of the interfac
hydrodynamics of a certain model of a biological membra
where surface tension is a negligible effect and for wh
curvature energy dictates the dynamical properties of
roughness interface thermal fluctuations@5#.

V. DISCUSSION

In this section we show the diagram of surface wave
gimes due to bending rigidity modulusK as the function of
the magnitude of the wave vectork and shear modulusE.
The next step will be the discussion of the power spectru

We consider the case when the surface tensiong, the
interfacial elasticitye, and the direct interaction,Pd , be-
tween the interfaces, are zero. The more complex situa
will correspond to the case that these elastic constants ha
finite value. However, wheng.K/h2 surface tension over
whelms the bending modes and the theory outlined here
produces the known mode phase diagram at long and s
wavelength, and at low to high frequency@14#. In the case
thatg,K/h2 ande,K/h2,e andg contribute a small effec
as compared to bending rigidity. In this case we obtain
diagram of bending modes that we will describe below.
the relevant experimental long wavelength limithk,1, and
in the low concentrated regime, the dynamics of the surf
fluctuations is determined mainly by the viscous behav
(wt,1). In this limit the Maxwell constitutive equation ca
be approximated by the expression of the viscosity as a fu
tion of the bulk shear elasticityh(w)5Et1hS . The disper-
sion relation of the squeezing mode, Eq.~17!, predicts the
existence of several resonance peaks, which scale with
magnitude of the wave vectork as shown in Fig. 2~a!. In
region I there is a propagating thickness-dependent ben
modewK

2 5Kk6h/2r for a low value of the kinematic viscos
ity n5h(w)/r. For moderate to high wave vecto
(K/rn2h)1/2,kh,1, there is an overdamped bending mo
w52 iKk4/8h and a viscous solution modew5 i4nk2,
which lies in region II. For a wave vector in the rangehk
,(K/rn2h)1/2,1 there is an overdamped bending modew
5 iKk6h3/24h. In the opposite limit of high-frequencywt
.1, the kinematic viscosity is frequency-dependent a
given by n5ns1E/ iwr. The dispersion relation predict
two propagating modes, a bending modew25wK

2 , and a
Rayleigh elastic wave,w254Ek2/r ~region III!. The bound-
ary line between the regions of propagating waves~I! and the
dissipative modes~II ! is given byk5E(t2/Khr)1/2 and E
5(Khr/t4)1/2. The crossover between the overdamped~re-
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e
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gion II! and the elastic waves~region III! is given by k
5(r/Et2)1/2. The separation line between waves of regio
and those of region III isk5(E/Kh)1/4. The boundary line
between the Rayleigh waves~III ! and the semi-infinite single
interface limit bending mode~region IV! w25Kk5/r(kh
.1) is given byk5(E/K)1/3. At short wavelengthkh.1
with a finite thickness layer there appears the overdam
modew5 iKk3/4h that describes the dynamics of a local
free single interface.

Figure 2~b! depicts the undulatory mode phase diagra
At wt,1, region I corresponds to a finite-thickness prop
gating bending modew25Kk4/2rh and the overdamped
modes arew5 ink4h2/3 and w53iK /2hh3, which are lo-
cated in region II with wave vector in the rang
(K/rn2h)1/4,kh,1. In the range ofkh,(K/rn2h)1/4,1
there is an overdamped bending modew5 iKk2/2hh. Finite-
thickness Rayleigh modesw25Ek4h2/3r are located in re-
gion III. In the short wavelength limithk.1 andwt,1 the
frequency of the finite thickness layer is dissipativew
5 iKk3/4h. For kh.1, the semi-infinite medium with a
single interface, there are a propagating bending modew2

5Kk5/r in the limit, wt,1, and a Rayleigh elastic wav
w254Ek2/r for wt.1.

In a recent paper Buzzaet al. @16# have considered the
surface modes on a fluid-fluid interface with adsorbed po

FIG. 2. Phase diagram of bending modes in terms of the w
vectork and the shear elastic modulusE for the squeezing~a! and
undulation mode~b!. The surface tension and interfacial elastici
are zero. The resonance frequencies in each region with t
asymptotic boundary lines are explained in Sec. V.
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meric surfactants. Their model interface consists of a v
thin diblock copolymer layer with elastic constantse,g,K
and a real viscosityhs , and a coupling parameterl associ-
ated with the coupling of lateral compression and transve
deformation of the interface. Their expression of the ela
free energy for interface deformation is the same as our
~2! in Sec. II for this quantity, with the basic difference bein
that they calculated an important contribution to th
equation Eq. ~2! due to the coupling term
2l*a(]z/]x)2(]2j/]x2)dS.

For the special case of a thin liquid-liquid monolayer,l
can be neglected, and for an ultralow surface tension t
predicted that the relaxation frequency of bending mo
scales likew'Kk5/r. In this limit of a very thin layer their
model system and our model layer become equivalent w
g505e and h→` ~case of a single interface of a sem
infinite medium!. In this case our calculation, using the di
persion relation of the undulatory mode@Eq. ~22!# confirms
this scaling relationship for the frequency as explain
above. However, when the layer thickness is increased,
coupling term proportional tol becomes more important an
it cannot be neglected. Therefore, the effect of the late
transverse coupling on the undulation and squeezing mo
@Eqs. ~17! and ~22!# for a finite-thickness layer should b
taken into account. In Appendix C we provide the corre
expressions for these modes when the coupling term is
corporated into the theory.

The effect of bending rigidityK in the power spectrum o
scattered light is demonstrated in Fig. 3. For liquid monol
ers with a dynamics described by the bending elastic ene
of deformationK'1kBT220kBT, the frequency range o
the surface wave is 0290 Hz for a Newtonian solvent o
shear viscosityhs56 cP, r5103 Kg/m3, and layer sizeh
5231026 m, where the wave vector isk52p/h. The con-
tinuous curve is the power spectrum in the case of a v
small value of surface tension and with inclusion of bulkE
510 N/m2 elasticity,t57.831026 sec and there is no in
terfaciale elasticity in the long wavelength limit. In this cas
the spectral maximum is centered around zero freque
When E593 N/m2,t53.531026 sec, the intensity is re

FIG. 3. Power spectrum of undulatory mode with inclusion
bending rigidityK5kBT. The surface tension and interfacial ela
ticity are zero. Bulk shear elasticityE510 N/m2, t57.8
31026 sec ~continuous line!, E593 N/m2, t53.531025 sec,
~dot-dashed line!. In both cases the solvent viscosity ishs56 cP
and the layer thicknessh5231026 m.
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duced by a factor of 4 with respect to the previous case a
shown in the dotted-dash curve. This reduction in the sp
tral intensity is due to the viscoelasticity response of
layer. In both cases studied the power spectra are br
which mean that these bending modes are damped wav

The power spectrum was studied at the characteri
modes of Fig. 2 and shows a quite similar shape in all ca
as those illustrated in Fig. 3, with the maximum occurring
the frequencies predicted by the asymptotic relationships
Fig. 2.

We discuss now the power spectra as given by Eqs.~17!–
~23! using the Maxwell model, and in the case thatK50 and
g ande have a finite value. The dispersion relation of bo
modes, squeezing and undulatory modes@Eqs. ~17! and
~22!#, shows a rather rich behavior of surface waves from
surface fluctuations. Therefore, to show the general trend
the spectra as obtained from the expressions ofS(k,w) let us
focus first on the spectra of the squeezing modes~qualita-
tively similar conclusions are found for the undulato
mode! and limit our discussion to the low-frequency ran
vt!1 at which the viscous liquid behavior prevails. Th
next step will be the discussion of the high-frequency lim
vt@1 or viscoelastic dynamic. Therefore, in order to cov
all these different regimes we select conveniently as mate
parameters, for instance, those appropriate for poly~N-vinyl-
2-pyrrolidone! with water as the solvent; solvent viscosi
hs51 cP, surface tensiong572 mN/m, effective medium
density r5103 kg/m3, degree of polymerizationN5104,
monomer sizea51.8 Å , polymer relaxation timet, and
interfacial elasticitye5ag with a a constant and amplitud
of wave vectork510 000 m21. We will neglect for simplic-
ity of our analysis the contribution of the direct interactio
~disjoining pressurePd50) and bending rigidity (K50) to
the surface dynamics. In the limitwt,1, h(v)'Et1hs .
If the surface elasticity is zero (e50), the resonance fre
quencies, which scales, with the magnitude of the wave v
tor k are @14# a propagating capillary wave atv25gk4h/2r
for low values of the kinematic viscosityn5h(w)/r, and for
moderate to high wave vector an overdamped capillary m
w25 igk2h/8h and the viscous solution modew5 i2nk2.

Typical spectra of Eq.~14! complemented with Eqs
~17!–~20! at the long wavelength limitkh,1 are shown in
Fig. 4~a! for different amplitudes of the module of elasticit
E and layer thicknessh56.2831026 m or equivalentlykh
50.02p with e50. In Fig. 4~a! we show the frequency
variation of the capillary peaks when the bulk shear elastic
E is increased. The two highest intensity peaks withE1 and
E2 bulk modulus are capillary peaks of the typew2

5gk4h/2r. In the same Fig. 4~a! the more lower intensity
peaks (E3 , E4 andE5) correspond to a capillary mode at
moderate wave vector in the viscous regime. It should
observed that these resonance peaks result from a comb
effect of surface tension and bulk elasticity. Therefore,
nature is more of the second type of capillary wave m
tioned just above (w25 igk2h/8h), and this fact can be ob
served if we go to a more concentrated solution and thus
higher value of the amplitude of shear modulus as is sho
there. It is observed in that plot that these capillary pe
become more intense, its linewidth sharpens, and their
quencies shift slightly to a lower value of frequency whenE
is increased as is predicted by the second algebraic rela

f
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ship given above. It should be noticed also the effect t
surface elasticity has on the spectra when its magnitud
increased as is shown in the dashed plots of Fig. 4~b! for a
fixed E5. Thus, for the moment let us study the effect ofe.
When e is increased gradually while keeping fixedE5, the
capillary peak decreases its intensity and moves to a hig
frequency and broadens, and starts to develop a quasie
peak located at a lower frequency, Fig. 4~b! ~dot-dashed!.
Eventually, for a higher value ofe, Fig. 4~b! ~dashed line!,
the quasielastic peak with a very small frequency becom
monotonously decaying spectrum that has a small shou
reminiscent of the capillary peak, which has shifted towa
a higher value of frequency moving to the range ofvt.1.
Let us investigate now the effect of making the layer of t
film thicker on the viscous regimewt,1. For this purpose
let us consider the parameters of the situation of Fig. 4~case
e50,E5 only! and increase the thickness of the layer up
the limit where the two interfaces do not interact, i.e., o
single fluctuating monolayer, Fig. 5. In doing so we ha

FIG. 4. Structure factorS(k,w) of the squeezing mode in th
viscous liquid regime,wt,1 and long wavelength limitkh,1
with uqhu,1. The wavelength isk5104 m21 and the layer thick-
ness h56.2831026 m with material parameters r
5103 kg/m3,hs51 cP,g572 mN/m and interfacial elasticitye
50. Figure 4~a! with bulk shear elasticityE1510 N/m2, t157.8
31026 sec and observed frequencyw151.473103 sec21, E2

520 N/m2, t251.231025 sec, w25w1 , E3593 N/m2, t3

53.531025 sec, w35867 sec21, E45110 N/m2, t453.8
31025 sec, w45133 sec21, E55119 N/m2, t554.2
31025 sec, andw5590.8 sec21. In these plots the correspondin
labels for each plot is assigned from top right (E1) to the lower plot
~bottom E5). The plot labeled~b! only illustrates the effect ofe
50 ~continuous line!, e50.01g ~dot-dashed! ande50.1g ~dashed
line!.
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gone from the long wavelength limit (h1), that is, length
scales larger than the thickness of the layer towards o
which is a comparable length scale with respect toh(h4). It
is observed that the capillary peak withe50 ~line with h1 in
Fig. 5! shifts to a higher value of frequency whenh is in-
creased (h2 and h3), but contrary to the cases in Fig. 4
does not broaden but instead becomes sharper. Its inte
decreases first when the wavelength changes from long d
to moderate; however, when the capillary peak is approac
~short wavelength limit!, the power spectrum intensity in
creases again up to a factor of 2 with respect to the pea
the initial capillary wave withE5.

If we increase still more the thickness of the layer and
to the limit of a single fluctuating interfacekh→` of a semi-
infinite medium, the wave reaches the capillary modevg
→(gk3/r)1/2 that has the magnitudevg'8.53103 sec21,
where we have used the values ofg, k, andr as given in Fig.
4. This value is in agreement with the one shown in the p
of Fig. 5 that was, however, obtained with the exact expr
sion of S(k,w) of Eq. ~14! and Eqs.~17!–~20! in the single
interface limit of a semi-infinite medium. It should b
pointed out that the effect of interfacial elasticity is not re
evant in this regime of wave vectork'104 m21 and fre-
quencyvt,1, wheneverkh→`. This would be observed
for a finite value of surperficial elasticity, for instance,e
50.01g, where the capillary peak would have moved t
wards the frequency value ofwg as in the case ofe50.
Therefore, the capillary peak is exactly the same as i
single bare interface of a half-space geometry,z,0.

Thus we can draw the following important trends: at
moderate thickness of the layer such that we are within
rangekh,1, and in the viscous liquid regimevt,1, the
layer sustains a quasielastic wave around zero freque
mainly due to superficial elasticity, and two capillary wave
one is a function of the surface tension but is independen
the elastic modulusE while the other is due to both surfac
tension and bulk shear elasticity, and of typew25gk2h/8h
as observed in Fig. 4 for the wave vector and material
rameters considered there, with the first occurring at a hig

FIG. 5. S(k,w) versusw of squeezing mode in the viscous liq
uid regime and long wavelength limit. The parameters conside
are k5104 m21, r5103 kg/m3, hs51 cP, g572 mN/m, e
50, E5119 N/m2, and t54.231025 sec, for different layer
thickness,h150.02p/k, h250.3p/k h350.6p/k and h45`. The
capillary peak (h4) is wg58.53103 sec21. Increasing thickness
starts from the left side of frequency axes.
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strength of frequency. An increase in the thickness of
layer has, as a result, the capillary peaks shifting toward
single capillary peak afforded by surface tension only a
remains as the only sustained mode of surface-rough
fluctuations and this situation is obtained when we ha
reached the limit of a single fluctuating membrane, Fig. 5

If we return to Fig. 4 of a finite layer thicknessh56.28
31026 m, kh,1 and uqhu,1 with e50, and consider a
high modulus of elasticityE5107 N/m2, then we will cross
over to the extreme elastic gel regimevt.1. Thus, the vis-
cosity is frequency-dependent and given byn5ns1E/ ivr
and the dispersion relation, Eq.~17!, predicts@14# a dissipa-
tive liquid modew5 ik2ns and two propagating modes,
capillary onew25gk4h/2r and a Rayleigh elastic wavewe

2

54Ek2/r, Fig. 6. In this case the Rayleigh wave has t
same scaling relation as in the semi-infinite medium case
its magnitude as given by the last relation before iswe52
3106 sec21 with uqhu50.1088, a value that coincides wit
the one shown in Fig. 6 obtained with the exact expressio
S(k,w).

In the preceeding paragraph we have studied, in the l
wavelength limit,hk,1 and uqhu,1 and high elastic re-
gime, wt.1, the appearence of an elastic Rayleigh wa
~Fig. 6!. Since q is frequency dependent@Eq. ~19!#, it is
possible to find surface waves in the long wavelength li
that satisfyuqhu.1 ~Ref. @14#!. The parameteruqhu is well
suited to describe a class of sustained surface waves tha
be found in the dynamic description of the surface-roughn
fluctuations on monolayer-covered viscoelastic films of fin
thickness. In order to show those elastic modes let us
crease the thickness of the layer starting from the one sh
in the plot of Fig. 6 up to the threshold thicknessh
50.3p/k of long wavelength that satisfykh,1 and amounts

FIG. 6. Structure factorS(k,w) of the squeezing mode in th
elastic regimewt.1 and long wavelength limitkh,1 with uqhu
,1, versus frequencyw. The wavelength isk5104 m21, and the
constant layer sizeh56.2831026 m with material parametersr
5103 kg/m3, t51 sec,hs51 cP, g572 mN/m, bulk shear
elasticity E5107 N/m2, and interfacial elasticitye50. The ob-
served elastic peak occurs atwe'23106 sec21 with uqhu
50.1088.
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to the valueuqhu52.3532 which is already near the ap
pearence of the elastic waves mentioned just above and
which uqhu.1 is satisfied. Figure 7 displays a train of se
eral peaks of the power spectrum where, however, neithe
them is of the Rayleigh type,we with uqhu50.1088 de-
scribed before. The different peaks shown in the plot of F
7 are compressional elastic peaks afforded by the bulk e
ticity E due to the increase in thickness of the layer a
therefore, by the availability of more accessible material
the thermal perturbation and their order can be estima
with Eq. ~19! with the conditionwt.1, from which results
w2'(qh)2E/rh2 and with the values of Fig. 7 givesw
'106 sec21.

In the same plot the effect of a finite superficial elastic
is shown that however, leads to the same spectra; thus,
value ofe or even the extreme value casee5100g does not
have an important effect on the spectra. It is possible that
train of elastic peaks is not observed in a real situation si
they show only a very tiny intensity even after being ampl
cated several times. However, a careful analysis of
graphics of Fig. 7 and the set of parameter values at wh
those peaks have occurred suggest that if we increase
more the thickness of the layer they could display a m
emphasized effect on the spectra. Thus, we increase
more the thickness of the layer. That is, we crossover fr
the limit kh,1 with uqhu.1 towards the elastic regime o
moderate and short wavelengthkh.1, with uqhu.1. In Fig.
8 we show a typical plot with the same parameter values
that in Fig. 7 but for a thicker layer with thicknessh
51.2p/k and using two different wavelengths; Fig. 8~a!, k
510 000 m21; and Fig. 8~b!, k520 000 m21. Once again
there appears a train of elastic peaks, all of which hav
finite width with an enhanced strength of intensity as co
pared to those of Fig. 7. Longer wavelengths separate m

FIG. 7. Structure factorS(k,w) of the squeezing mode in th
elastic regimewt.1 at the threshold of the long wavelength lim
kh'0.942 478 anduqhu'2.353 2 versus frequencyw. The wave-
length is k5104 m21 and constant layer thicknessh59.42
31025 m with material parametersr5103 kg/m3, t51 sec,hs

51 cP,g572 mN/m bulk shear elasticityE5107 N/m2, and two
values of interfacial elasticitye50 ande5100g. The graphics with
both values ofe merge in the single plot shown here, where t
series of elastic peaks are of the orderw'106 sec21.
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the resonance frequency peaks as is shown in Fig. 8~b!. This
clearly defined sequence of almost equally spaced pea
shown only in the range of layer thicknessh50.2pb/k with
1<b<8 for the parameters considered in those plots.
the larger thickness and in the limit of a single cover
monolayerh→` all the peaks diminish its intensity, narrow
and merge to the profile of a single quasielastic broad p
as is shown in Fig. 8~c!. This train of peaks displayed jus
above in the plot of the power spectrumS(k,w), were, in
fact, predicted by Senset al. ~Ref. @14#! for a finite-thickness
layer of a homogeneous polymeric liquid where the visco

FIG. 8. Structure factorS(k,w) versus frequencyw of the
squeezing mode in the elastic regimewt.1, moderate and large
wavelength limitkh.1 and uqhu.1 with material parametersr
5103 kg/m3, t51 sec,hs51 cP, g572 mN/m, interfacial
elasticitye50, and bulk shear elasticityE5107 N/m2 at two dif-
ferent wavelengths.~a! k5104 m21 with layer thicknesskh
51.2p, ~b! k523104 m21 with layer sizekh51.2p, and ~c! k
5104 m21 for the infinitely thick layer caseh→`. In the cases of
~a! and ~b! the order of the first resonance frequency peak isw
'106 sec21.
is

r

k

s

properties of the solvent were neglected. The interfaces
the polymer layer were characterized by the elastic const
g and e. They provided the strength of the correspondi
frequencies of the sustained modes on the layer through
analysis of approximate expressions of the dispersion r
tions. In our present paper we have taken into account
solvent properties and another elastic quantity, the bend
rigidity modulus K, which turns out to be relevant in th
dynamics of a wide class of polymeric surfactant monola
ers. In this paper we provide the full expressions of t
power spectrumS(k,w) and their analysis, and of the dispe
sion relations for the two main collective modes, squeez
and undulatory, which under the limits considered by Se
et al. @14# reduce to their results for the dispersion relatio
whenK50, hs50, andrs50.

VI. CONCLUSION

We have provided the dispersion relations and pow
spectra of the squeezing and undulatory modes of a fre
standing layer of a viscoelastic material using the two-flu
model. An asymptotic analysis of the dispersion equat
provides expressions of the characteristic bending mo
which consist of propagating and overdamped bend
modes to Rayleigh elastic waves. Figure 3 demostrates
bulk elastic properties of the polymer layer produces a low
intense spectrum than the layer constituted by a simple N
tonian nonviscoelastic fluid for finiteK and negligible sur-
face tension and interfacial elasticity. In the opposite sit
tion of zero-bending energyK, we have shown that in the
elastic regime and for a wavelength comparable to the th
ness of the layer~that is, short and moderate wavelengt
kh.1 anduqhu.1), the power spectrum displays a series
peaks associated with elastic waves whose resonance
quencies are due to the bulk shear elasticityE of the under-
lying polymer network. At these values ofE, surface elastic-
ity e produces effectively a negligible effect on the spec
S(k,w) even at extreme values ofe5100g. It is possible to
find the same class of elastic peaks in the long wavelen
rangekh,1, uqhu.1; however, almost all of them are a tin
effect. For lower values of the amplitude of bulk elasticityE,
that is, in the case of low and moderately concentrated p
mer solutions, surface elasticitye starts to play an importan
role shifting the magnitude of the present resonance pe
and producing in all cases studied, a monotonously qu
elastic peak around zero frequency~Fig. 4!. Our general and
exact expressions of the structure factor, Eqs.~20! and~21!,
reduce to the equivalent properties of a single fluctuat
monolayer of the semi-infinite medium, Eq.~24!, in the limit
of noninteracting interfaces of the layerh→`. Since our
model of the viscoelastic layer consists of surface-active
terfaces characterized bye, g, Pd , and bending rigidityK,
in the limit (h→`) of an elastic monolayer, our expressio
of the dispersion relation generalizes those reported pr
ously for the two-fluid model of a single viscoelastic inte
face. Thus, Eqs.~20!, ~21!, and ~24! may be useful to de-
scribe the superficial hydrodynamic properties of
viscoelastic surfactant membrane where bending rigidity
the most relevant energy scale of the interface, and sur
tension is a negligible effect.
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APPENDIX A

We demonstrate in this appendix that Eq.~25! is equiva-
lent to the dispersion relation of Wanget al. ~Eq. ~46! of Ref.
@12#!,

D~w!52G2A11
2iw

G
1~ iw1G!21wg

2

1we
2Fwg

2S 12A11
2iw

G D Y w21A11
2iw

G G ,
~A1!

wherewg5(gk3/r)1/2, we5(ek3/r)1/2, andG52nk2. Using
the above quantities, Eq.~A1! can be written as

D~w!524k4n2A11
iw

nk21~ iw12k2n!21
gk3

r

1
ek3

r F gk3

rw2 S 12A11
iw

nk2D 1A11
iw

nk2 G .
~A2!

Using now the identityq5kA11 iw/nk2 in Eq. ~A2!,

D~w!5
4k4n2q

k
1~ iw12nk2!21

gk3

r

1
ek3

r F gk3

rw2 S k2q

k D1
q

kG . ~A3!

Multiplying both sides of Eq.~A3! with 2w2 results in

2w2D~w!5~2w212ink2w!2

2w2S gk3

r
1

eqk2

r
24n2k3qD

1
ek2

r
~q2k!

gk3

r
, ~A4!

which is Eq.~25! with K50.

APPENDIX B

Here we demonstrate that the Lucassen and Lucas
Reynders@19# result is equivalent to Eq.~25!. The general-
ized Lucassen equation reads

S ek21Kk4

w
1 ih~k1q! D S gk21Kk4

w
2

wr

k
1 ih~k1q! D

1@h~k2q!#250, ~B1!
-
p-

n-

We expand this equation and multiply it by the factorq
2k)w2k, and use the identity2h2(k1q)21h2(k2q)2

524kqh2, thus, Eq.~B1! can be written

~q2k!ek2~gk21Kk4!k2ek2rw2~q2k!

1ek3ih~k1q!~q2k!w1~gk21Kk4!ihkw

3~q1k!~q2k!2 ihrw~q1k!~q2k!w2

24h2k2qw2~q2k!50. ~B2!

Using now the identities (q1k)(q2k)5q22k2 and q2

2k25 iw/n in Eq. ~B2!, and dividing this equation byr2 we
get, after some algebraic steps,

w42w2S gk31Kk5

r
1

ek2q

r D1
ek3w2

r
2

ek3w2

r

1
ek2

r S gk31Kk5

r
~q2k! D24n2k2qw2~k2q!50.

~B3!

Since the term24k2n2qw2(k2q)524k4n2w224ink2w3

14k3n2qw2 where we used the identityq25k21 iw/n, we
rewrite Eq.~B3! as

w424ink2w324n2k4w22w2S gk31Kk5

r
1

eqk2

r

24n2k3qD1
ek2

r
~q2k!

gk3

r
50 ~B4!

or

~2w212ink2w!22w2S gk31Kk5

r
1

eqk2

r
24n2k3qD

1
ek2

r
~q2k!S gk31Kk5

r D50, ~B5!

which is Eq.~25!.

APPENDIX C

In order to include into the dispersion relations of t
squeezing and undulatory modes, Eqs.~17! and ~22!, the
effect of the lateral-transverse couplingl, we consider as
new boundary conditions equivalent to Eqs.~10! and ~11!;
for the balance force in the normal direction,

p05ps1g
]2j

]x2 1K
]4j

]x4 2Pd8~h!dj12h
]vz

]z
1l

]3z

]x3

~C1!

at z50, and for the tangential forces the boundary condit
reads

szx5e
]2z

]x2 2l
]3j

]x3 , z56
h

2
. ~C2!

From these boundary conditions, Eqs.~C1! and ~C2!, the
resulting dispersion relations are for the squeezing mode
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Dl
s~k,w!5Ds~k,w!1S 4ik5nlw

r
2

k7l2

r2 D tanhS hk

2 D
3Fq cothS hq

2 D2k cothS hk

2 D G1
2w2lk4

r
,

~C3!

and for the undulatory mode,

Dl
u~k,w!5Du~k,w!1S 4ik5nlw

r
2

k7l2

r2 D cothS hk

2 D
3Fq tanhS hq

2 D2k tanhS hk

2 D G1
2w2lk4

r
,

~C4!
ch

e
st

,

whereDs(k,w) andDu(k,w) are Eqs.~17! and~22! respec-
tively. The relaxation functionx that appears inS(k,w)
5(kBT/pw)Im@x# remains exactly the same as given
Eqs. ~20! and ~21! where it is only necessary to replac
Ds(k,w) by Dl

s(k.w) and Du(k,w) by Dl
u(k,w). The limit

h→` reads

Dl
sin~k,w!5Dsin~k,w!1S 4ik5nlw

r
2

k7l2

r2 D ~q2k!

1
2w2lk4

r
. ~C5!
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