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Surface hydrodynamics on a freely standing layer of a polymer solution
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The dispersion relation and the power spectrum of the surface modes on a surface-active, freely standing
film of a concentrated polymer solution are studied with a two-component fluid model of a viscoelastic
material. The diagram of bending modes is obtained from an asymptotic analysis of the dispersion equation
when the bending rigidity modulus is the main elastic effect on the layer interface. The resulting dynamical
structure factor provides the characteristic squeezing and undulation surface modes of the interfaces driven by
thermal fluctuations or by a weak external perturbation. The effect of interfacial and bulk elastic properties on
the power spectrum of the scattered light is studied. In the regime of an elastic solution, finite-thickness effects
and bulk elastic properties of the layer sustain a train of elastic peaks when the wavelength of thermal
fluctuations is comparable to the thickness of the layer. Interfacial elasticity properties increase the strength and
shift all resonance frequency peaks producing a less intense quasielastic spectrum around zero frequency.
[S1063-651%99)03010-X

PACS numbgs): 68.35.Ja, 68.10.Et, 83.10.Dd

I. INTRODUCTION liquid-vapor interfaces includes insoluble liquid films of
polymeric surfactants such as those found in amphiphilic
Surface dynamics on viscoelastic films are a subject ofmembranes of very low-surface tension and low-bending en-
much current interegtl—3]. They play an important role in ergy[5,16,17.
the stability of emulsions, foams, in the process of hydrody- The energy required in these systems to create a deform-
namic relaxation of biological membranes, as well as ining surface wave include a corresponding restoring force due
other technological applicationgl—6]. Modern techniques to the mean bending elastic modulus. In this paper we extend
including inelastic light scattering provide accurate informa-the two-fluid-model approach to include the elastic bending
tion about the surface hydrodynamics of polymer solutionsrigidity in the description of the surface hydrodynamics of
and measure the spectral intens8fk,w) of the scattered liquid films such as it is found in amphiphilic membranes of
light, of frequencyw and magnitude of wave vectky by the  surfactant materials. We address the problem of determining
interface roughness and thermal fluctuatiphls The experi-  the exact dispersion relation of the surface modes due to the
mental investigation of the surface modes in clearly charachending rigidity modulus, surface tension, and interfacial
terized film systems made of polyethylene oxide in water anlasticity of a symmetric freely standing film of a viscoelas-
polyisobutylene in organic solvents have posed intriguingtic monolayer. An asymptotic analysis of the dispersion re-
questions concerning the effect of solvent quality, bulk sheatation provides the diagram of surface modes when the bend-
elasticity, surface tension, and interfacial elasticity on theing rigidity modulus is the only elastic parameter that
interfacial roughness fluctuatiof,3,7—9. determines the structure of the interfaces and the shear elas-
Theoretical studies of the surface dynamics on concentic modulus, the bulk property of the layer. The diagrams for
trated polymer solutions have mostly been based on the twahe squeezing and undulation surface modes show a cross-
fluid model of a supported viscoelastic polymer solution in aover from bending finite-thickness propagating modes over
solvent that was predicted to exhibit a crossover from capildissipative overdamped to elastic waves when the polymer
lary to viscoelastic surface fluctuations as a function of poly-concentration is increased. For a layer constituted by a
mer concentratioj10-12, a prediction that has been re- simple Newtonian fluid with bending rigidity the maximum
cently verified experimentally[2,7—9. Moreover, this of the power spectrum is more enhanced than in the case of
approach was later extended including the effect of interfaa viscoelastic layer.
cial elasticity on capillary and elastic Rayleigh mod&g]. We show that for a wavelength comparable to the thick-
The hydrodynamic modes of a very thin layer of viscoelasticness of the viscoelastic layer, in the absence of a bending
materials were studiefl3], finite-thickness effects on the rigidity modulus and far into the elastic regime, bulk shear
surface modes on a freely standing viscoelastic soap filnelasticity sustains a series of peaks in the power spectrum.
[14], and polymer gel§15] were also considered. An impor- Low wave vectors tend to merge these peaks into a single
tant class of viscoelastic polymer films that can be found abroad peak. This spectral property may be observed by the
present light-scattering techniques in a sufficiently concen-
trated layer of viscoelastic material. In the next section we
*Also at Departamento de $ica, Centro de Investigagioy Estu-  introduce the viscoelastic layer model. The hydrodynamic
dios Avanzados del IPN, Apartado. Postal 14-740xide D.F.,  theory of the thermal fluctuations at the interfaces is given in
Mexico. Sec. lll. The relevant hydrodynamic modes of the thermal
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vapor , =87In wherel =e? ekgT is the Bjerrum length wittkg
@ the Boltzmann constant arfdthe temperature. In Eql), A,
is a function of the surface potentialy, given by

&Y

z Toy TS tanhez,lfol4kBT). On the oth(_ar side, the elastic properties .of a
surface are given by the viscoelastic free energy of an inter-
. polymer solution h face deformation that has three contributions,
1 (0% 0%6\% 1 dE\? [ 0€\?]?
F—EJ’aK W—’_&_)/Z) dS“rzfa’y (&) +<W) ds
e + 1f i3 2+ 7)° 2dS» 2
2).9ax) oy @

The first term in Eq.2) is the curvature free energy of an
elastic membrane with rigidit, and the second term de-
scribes the coupling of a change in unit aseaf deformation
with a corresponding change in volunj&8]. Both terms
determine the strength of the deformation of the interface
due to fluctuations in the vertical positions of the adsorbed
FIG. 1. Geometry of a symmetric viscoelastic polymer layer of Molecules. The third term is the free energy associated with
thicknessh. The equilibrium interface configurations correspond to fluctuations of the position of molecules in the plane of the
the dashed linega) Squeezing andb) undulatory modes. interface with interfacial elasticity modulus which is re-
lated to the concentration of adsorbed matgrigl].
fluctuations and power spectrum are given in Sec. IV and the
physical description of them is given in Sec. V. Section VI is . EQUATIONS OF MOTION
a brief summary. AND BOUNDARY CONDITIONS

In this section we quote the main results of the two-
Il. MODEL POLYMER FILM coupled fluid-model approach for the description of the hy-

Figure 1 shows our model of a viscoelastic layer that condrodynamics of the surface wave of a viscoelastic medium of

sists of two infinite interfaces in th¥ and Y directions that & Polymeric material. The equations of motion of the veloc-
are separated by a mean distariteWe assume that the ity field v of the fluid and the displacement field of the
interfaces are identical and contain a polymer solution inP°lymer[4,21] can be written in the form

contact with a vapor in a symmetric 1-1 electrolyte solution oV

of monovalent ions of charge e released in the solvent of a psr = V-(+M)— psVW+ fI(V’U),

dielectric constangg at concentratiom. Since there is sym-

metry in theXY plane we assume the fluctuations are inde- 5

pendent of the coordinat¢éand take the surface wave propa- Iu_ o ®) 4 M) — _ '

gating with wave vectok in the X direction. We denote by Pe V(M) = pp VW= (v,0). 3
&(x,t) and ¢(x,t) the shape of the interface in the normal

and lateral displacements from its equilibrium configurationps andp, denote the solvent and polymer densitieS) and
at timet. We think of the two interfaces as charged elastico{P are the local solvent and polymer stress tensors,fand

membranes with adsorbed ions or ionic amphiphilic mol-=c,(u-v) is the local polymer-solvent coupling term. The
ecules that provide an interfacial elasticiétyvith the surface  proportionality constant scales & = 5./, wherel is the
tensiony, and the curvature elastic deformation enely mesh size of the polymer network amd is the solvent shear

?etermines the equilibrium shape configuration of the interyiscosity. On the other hand, the strain tensors are given by
ace. [22],

In thermodynamic equilibrium, the thickness of a layer
results from a balance of the direct interactions between the (9 _
interfaces as given by the repulsive electrostatic double-layer Gij = 7s
forces of the membranes and the conventional, nonretarded,
attractive Van der Waals interactiony= —H(6wh%) 1, au;  du; 2
whereH is the Hamaker constant for water-hydrocarbon con- o) =E(t) x o TIFO- §E(t)) [V-uls;.
tact typically having the valueX10-2% J. Thus, the force is J ! 4
approximately given by

(9Vi (9VJ

— 5 ,
(9Xj t?Xi Ps "

p is the solvent hydrostatic pressuwe s theith component
P4(h)=64kgTnAe "+ W,. (1)  of the solvent velocity fieldE(t) andF(t) denote the com-
plex shear and compressional moduli of the polymer net-
Here the first term accounts for the electrostatic interactiorwork, andu; is theith component of the polymer network
of two flat and weakly overlapping double layers; the rangedisplacement field. The direct interactions are embodied in
of interaction is given by the inverse Debye lengkh the Maxwell stress tensadvi(x,z,t) and the Van der Waals
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potential W(x,z,t) [4,14]. The contributionW(x,z,t) is the are related, respectively, to the local profile velocity compo-
sum of all long-range Van der Waals interactions between alhents as &, ,(t)~v,(x,z==h/2t) and (t)~v,(x,z=
particles in the fluid and between the particles in the interface-h/2 ). '
with others in the solution. Following the procedure of Ref.  The most general solution of Eq&) and(9) is a station-
[4] we can formulate Eq(3) in a different manner. ary wave that satisfies the asymptotic limitw)—0 asz

In the infinite coupling limit, v—u, the Fourier and — *=« and has the forni23]
Laplace transform of E(3) reduces to an effective equation

of motion, vy={ik[Asinh(kz) + B coshkz)]
iwpv=V- a(w), (5) —q[C cost{gz) + D sinh(gz)]}e' ™,
where now v,=k{A coslkz) + B sinh(kz)
vy ov +i[C sinh(qz)+ D coslqz)]}e (kW)
‘Tij(W):”?(W)<K+%)_P(W)5ij : (6) _
! ! ps= —iwp[ Asinh(kz) + B coshkz)]e' W0 (12)
=pstpy, i=V—1,
P=PsTPp where the constants,B,C,D, and the value of the wave
(W)= g+ E(w)/iw, (7)  vectorg should be determined from the above given bound-
ary conditions, Eqs(10) and (11).
and The thermal waves described by Ed2) embody two
, _ types of a liquid motion. One may observe that the interfaces
P(w) = ps(w) = [F(W) = FE(W) ][V - V(W) /iw + Peg;. move out of phase in the normal directiarto the layer, so

®) that the components satisfy,(x,z,t)=—v,(x,—zt) and
V,(X,z,t) =v,(X,—zt). This is called the squeezing relax-

Due to the high compressibility modulus of the polymer net-ation mode. On the other hand. when the two interfaces

work, the second contribution t8(w) in the last equation, D
Eq. (8), is small compared tm(w). Therefore, it will be move parallel to the normal direction so thai(x,z,t)
: N ’ =v,(X,—z,t) andv,(X,z,t)=—v,(X,—zt) one encounters

neglected in the subsequent expressions. The third term tH led undulat de F -
the right-hand side of Equatiof8), P, is the effective € so-cafled unduiatory mode. From now on, SUpErscrip
|1—Ftters s” and “ u” denote the squeezing and the undula-

pressure contribution due to the direct interactions betwee : ; :
the two interfaces and is determined[#1. Its specific form t_ory mode, resp(_actlvely. The aboye-dlsplayed parity proper-
ies of the velocity components with respect to coordirmate

enters only through the boundary conditions that the veIocit;} I 0 stud tel h of the t laxation d
field v satisfies at the interfaces and will be provided below &'OW ONe 10 study separat€ly each ot the two relaxation dy-

Since we are assuming that the speed of propagation of tH&@mics Of a liquid motion on the layer.
surface wave is small compared to the speed of sound, Eq.

(5), it should also be complemented with the imcompressible IV. POWER SPECTRUM OF SQUEEZING
fluid condition AND UNDULATORY MODES
V.-v=0. (9) The application of a weak external presspPéx,y,t)z on

the interface contribute to the deformation energy of the sur-
Equations(5) and (9) provide the hydrodynamic description face as—[,&(x,y,t)p%(x,y,t)dS. Therefore, at first order in
of the surface modes in terms of the velocity fieldhat is ~ P°(x,y,t) linear-response theorfl] allows us to find the
subject to the boundary conditions at the free interfaces. Usgeneral form of the interface deformation in the normal di-
ing Egs.(1) and(2), one can write for the effective force per rection, namely,
unit area in the normal direction to the membraAe20]

o 52 e
p =DS+VW+KW—Pd(h)5§+277

vy

B f(x,t)=fj‘X(x—x’,y—y’,r)po(x’,y’,t—T)deS’.
_vz aJo
az’

(10 (13
whereP(h)=dPy(h)/dh, &¢ is the thickness of the layer, The Fourier and Laplace transformed response function
andp®=TI1%+"w) 3 weakly applied external perturbation x(k,w) is related to the surface displacement autocorrelation
of constant strengtiI®. A surface-active material on the function (£(k,t)¢(k,0)) through the fluctuation-dissipation
liquid interfaces implies the existence of in-plane tangentiatheorem, which provides the exact expression of the power
stress, which satisfies the following boundary condition: ~ spectrumS(k,w) of the scattered light

L

O,x— €5,
zZX &Xz

h _ kgT
zZ= ii' (11 S(k,w)= Wlm[)(]. (14

where € is the interfacial elasticity of the membrane. The The relaxation functiory is related to both dynamical modes
normal coordinate to the interface is representedzbyn/2  discussed above through the amplitudes of the thickness
+£&(x,y,t), whereé is small compared tb/2. £(t) and(t) variation of a polymer film, i.e.,
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S5E=xTI=3(¢— &) The power spectrum is determined once we fiffd We
now use the results & andC of Eq. (16) in Eq. (15) for x*
5§u:XuHO: LE+E). (15) from which we get

We will describe briefly the procedure to determine the hk
response functiong® and y" that are involved in the exact ktani‘(—)

2
expression of the power spectrusik,w) for the symmetric s:—z[ - i q cotl‘( @) _ kcotl—(ﬂ( w2l
layer case. We have seen above that for the squeezing moof\é pD3(k,w) p 2 2
A=D=0 and, thereforeC andB should have a finite value. (20)

Thus, we replace the velocity components of E®) in the

boundary conditions as given by Eqd.0) and (11) from  rqr the undulatory mode we need to consider now the case
which we obtain two equations for the two unknown con-g_c—g in order to satisfy the symmetry requirements on
stants,C andB, in terms of the strengthl” of the weakly  he components of the velocity when changing the sign of
applied external perturbation. We find the coordinate. Using similar methods we obtain the relax-
ation function of the undulatory mode,

—I1%? gh k?q gh
=— —n(q2+k2)sinr—<— +e.—cosl{—”,
D5(k,w) 2 iw 2 . t’,<hk>
CO A 2
T1%w2 qh k3 hk u 2 [ ek I‘(hq) I‘(hk P
_ 2 eind A0 % e Xi\=——1 — —|qtanh = | —ktanq —| [+w?},
C DS kw) 2nik sml’( 2) eWcosI'( 2” (16) pD(k,w) P 2 2
(21)
and
h where the dispersion relation is now given by
€
DS(k,w) =[ —w?+ 2i v(w)k?>w]?>—w?| w2+ —qk? cotl'<7q)
P DU(k,w) =[ — w2+ 2i »(w)k?w]?
hk hq
_ 21,3 o 1 h
4v(w)?k qtan)’( 3 cott‘( 3 } w2 wﬁ—i—quztanl‘(?q)
ek?w? hq hk
) _ hk h
+ qcotk( > ) kCOt"( 2 H 17 —4v(w)%k3q cotl-<7 tanl‘(7”
) hk ek®w} hq hk
w;=tan > |Wes + gtan > —ktan > | (22
W2=[7k3+Kk5—2kP’(h)]} (18 hk
c & p wi= cotl-( ?) w2, (23
s o W
q°=k°+ W) (19 In the undulatory mode-dispersion relation Eg2), the

disjoining pressure plays no role, which follows from the
with »(w) = 5(w)/p. The functionD%(k,w) is the dispersion fact that _in this case_thert_e is no t_hickness variation and hence
relation of the squeezing mode as given by the two-fluid"© coupling to the direct interaction. Both E¢$7) and(22)
model of a viscoelastic material. The viscoelastic propertie§'® €quivalent to the dispersion relations of Joogd|
of the polymer solution are set in terms of the complex’henK=0, and the complex shear viscosif(w) is re-
frequency-dependent shear viscosiggw). Equation (17) placed by a real constgnt valu;g_m_ ordgr to conform tc_) h|§
corresponds to the dispersion relation of capillary waves in &0del of a surface-active, but finite-thickness soap film in a
Newtonian liquid[22] having the viscosityns. A simple _Nevvtonlan solvent with viscosityys . Therefore,_ our results
model for the complex shear viscocity is the Maxwell modelin Eds. (17) and (22) constitute their generalization for a
of a single chain relaxation time of entanglement§n(w)  Viscoelastic layer of a polymer solution. o
= p+E7/(1+iwr)], which predicts a crossover from an The single m;erface limit of a semi-infinite medium is
interfacial capillary wave mode at low bulk-volume concen-©Ptained from either Eqg17)—(19) or Egs.(22) and (23)
trations of a polymer solution to a viscoelastic dissipativeWith h—; the relaxation functiorys, is given now by
mode at high concentratidd0]. Recently, these predictions
of the two-fluid model have been proved experimentally for k ek
a very thin polymer film{7-9]. These experimental findings XSi”:m[ - —(gq—k)+w?
and the theoretical analysi$0—13 correspond to the limit PBsint % p
h—oo of a single fluctuating monolayer in this context of a
finite thickness layer model. where the corresponding dispersion relation

, (29)
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3 5 2
Dgin(k, W) = (—wW?+ 2i vk?w)2—w? YK+ Kk + cak log (k) B @
P p 10 Bending mode of semiinfinite
2 3 5 medium and vapor
g+ S (g0 P o9 n Y
P Finite thickness Rayleigh
Equation(25) is a generalization of the dispersion relation of propagating bending elastic waves
Hardenet al. [10] (in their work, K and e are zerg, and of modes

Wang and Huan§12] (case ofK =0, see Appendix Afor a
surface-active film on a semi-infinite medium of a polymer |
solution with a finite-bending modulus. It also generalizes

the dispersion relation of Lucassen and Lucassen-Reynders
[19] for a monolayer without viscoelastic properties and 4 15 3
elastic constants and y (see Appendix B Equations(20) (Kph/z ) K/h log, (B)
and(21)—(24) could be relevant to the study of the interfacial

hydrodynamics of a certain model of a biological membrane

overdamped
modes

where surface tension is a negligible effect and for which log, (K . . (b)
curvature energy dictates the dynamical properties of the ?‘f%”f"“g m;d“fs:m" Rayleigh
roughness interface thermal fluctuatidss. ;“a:‘;‘re me '”\;” an elasltivc modes
1/h
V. DISCUSSION
Finite thickness Rayleigh finite

In this section we show the diagram of surface wave re- bending modes thickness elastic

gimes due to bending rigidity modulus as the function of (ph/1'4K)1/4

the magnitude of the wave vect&rand shear moduluk.

The next step will be the discussion of the power spectrum.
We consider the case when the surface tensiprihe

interfacial elasticitye, and the direct interactiorR,, be- 3

tween the interfaces, are zero. The more complex situation K/h log, (E)

will correspond to the case that these elastic constants have a

finite value. However, wher>K/h? surface tension over- , , )

whelms the bending modes and the theory outlined here re- G- 2 Phase diagram of bending modes in terms of the wave

produces the known mode phase diagram at long and sho\f?Ctork.and the shear elastic mOde.Sfor the ;queezn_nga) anql .

wavelength, and at low to high frequengy4]. In the case undulation modgb). The surface ten_S|0n'and |nterfac_|al ela_st|C|ty _

that v< K/h2 and e< K/hZ2.e and v contribute a small effect are zero. The resonance frequenclles in each region with their

Y [ e ddy . " asymptotic boundary lines are explained in Sec. V.

as compared to bending rigidity. In this case we obtain a

diagram of bending modes that we will describe below. Ingion 1) and the elastic wave&egion lll) is given by k

the relevant experimental long wavelength limk<1, and = (p/E7?)Y2 The separation line between waves of region |

in the low concentrated regime, the dynamics of the surfacand those of region Il i&=(E/Kh)4 The boundary line

fluctuations is determined mainly by the viscous behaviohetween the Rayleigh wavél ) and the semi-infinite single

(wr<1). In this limit the Maxwell constitutive equation can interface limit bending moddregion IV) w?=Kk® p(kh

be approximated by the expression of the viscosity as a func>1) is given byk=(E/K)*3. At short wavelengttkh>1

tion of the bulk shear elasticity(w)=E7+ ns. The disper-  with a finite thickness layer there appears the overdamped

sion relation of the squeezing mode, E(7), predicts the modew=iKk®47 that describes the dynamics of a locally

existence of several resonance peaks, which scale with tifeee single interface.

magnitude of the wave vectde as shown in Fig. @). In Figure 2b) depicts the undulatory mode phase diagram.

region | there is a propagating thickness-dependent bendingt wr<1, region | corresponds to a finite-thickness propa-

modew? = Kk®h/2p for a low value of the kinematic viscos- gating bending modev?=Kk?*2ph and the overdamped

ity v=mn(w)/p. For moderate to high wave vector, modes arew=ivk*h?/3 andw=3iK/27h3, which are lo-

(K/pr?h)¥2<kh<1, there is an overdamped bending modecated in region Il with wave vector in the range

w=—iKk*8» and a viscous solution mode=i4vk?  (K/pr?h)¥<kh<1. In the range okh<(K/pr?h)¥*<1

which lies in region 1. For a wave vector in the rangk  there is an overdamped bending maue iKk?/27h. Finite-

<(K/pv*h)Y2<1 there is an overdamped bending made thickness Rayleigh modes?=Ek*h2/3p are located in re-

=iKk®h3/244. In the opposite limit of high-frequencywr  gion IIl. In the short wavelength limitk>1 andwr<1 the

>1, the kinematic viscosity is frequency-dependent andrequency of the finite thickness layer is dissipative

given by v=vs+Eliwp. The dispersion relation predicts =iKk3/47. For kh>1, the semi-infinite medium with a

two propagating modes, a bending modézwﬁ, and a single interface, there are a propagating bending metie

Rayleigh elastic wavay?=4EKk?/p (region Ill). The bound- =KKk®/p in the limit, wr<1, and a Rayleigh elastic wave
ary line between the regions of propagating wailgand the ~ w?=4Ek?/p for wr>1.
dissipative modesgll) is given byk=E(7%/Khp)'? and E In a recent paper Buzzet al. [16] have considered the

=(Khp/7)¥2, The crossover between the overdamped  surface modes on a fluid-fluid interface with adsorbed poly-
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duced by a factor of 4 with respect to the previous case as is
shown in the dotted-dash curve. This reduction in the spec-
tral intensity is due to the viscoelasticity response of the
layer. In both cases studied the power spectra are broad,
which mean that these bending modes are damped waves.

The power spectrum was studied at the characteristic
modes of Fig. 2 and shows a quite similar shape in all cases
as those illustrated in Fig. 3, with the maximum occurring at
the frequencies predicted by the asymptotic relationships of
Fig. 2.

We discuss now the power spectra as given by Egg—

(23) using the Maxwell model, and in the case tKat 0 and
wlHz3 v and e have a finite value. The dispersion relation of both
modes, squeezing and undulatory modé&ss. (17) and

FIG. 3. Power spectrum of undulatory mode with inclusion of (22)], shows a rather rich behavior of surface waves from the
bending rigidityK=kgT. The surface tension and interfacial elas- surface fluctuations. Therefore, to show the general trends of
ticity are zero. Bulk shear elasticityE=10 N/n?, 7=7.8  the spectra as obtained from the expressior&(kfw) let us
X10°° sec (continuous ling E=93 N/nf, 7=3.5X10°° sec, focus first on the spectra of the squeezing mogesalita-
(dot-dashed line In both cases the solvent viscosity#§=6 cP  tjyely similar conclusions are found for the undulatory
and the layer thickness=2x10"° m. mode and limit our discussion to the low-frequency range

w7<1 at which the viscous liquid behavior prevails. The
meric surfactants. Their model interface consists of a verynext step will be the discussion of the high-frequency limit
thin diblock copolymer layer with elastic constantsy,K w7>1 or viscoelastic dynamic. Therefore, in order to cover
and a real viscositys, and a coupling parametar associ-  all these different regimes we select conveniently as material
ated with the coupling of lateral compression and transversparameters, for instance, those appropriate for fétyinyl-
deformation of the interface. Their expression of the elasti®-pyrrolidong with water as the solvent; solvent viscosity
free energy for interface deformation is the same as our Eqys=1 cP, surface tensioj=72 mN/m, effective medium
(2) in Sec. Il for this quantity, with the basic difference being density p=10° kg/m®, degree of polymerizatioN=10%,
that they calculated an important contribution to thismonomer sizea=1.8 A, polymer relaxation timer, and
equation Eqg. (2) due to the coupling term; interfacial elasticitye=ay with @ a constant and amplitude
— NS a(9L19x)%(9%El 9x?)d S, of wave vectok=10000 m . We will neglect for simplic-

For the special case of a thin liquid-liquid monolaykr, ity of our analysis the contribution of the direct interactions
can be neglected, and for an ultralow surface tension thegdisjoining pressuré®;=0) and bending rigidity K=0) to
predicted that the relaxation frequency of bending modeshe surface dynamics. In the limitr<<1, n(w)~E7+ 7s.
scales likew~Kk®/p. In this limit of a very thin layer their If the surface elasticity is zeroe0), the resonance fre-
model system and our model layer become equivalent whequencies, which scales, with the magnitude of the wave vec-
y=0=¢ and h—x (case of a single interface of a semi- tor k are[14] a propagating capillary wave at>= yk*h/2p
infinite mediun). In this case our calculation, using the dis- for low values of the kinematic viscosity= 7(w)/p, and for
persion relation of the undulatory mo@Eqg. (22)] confirms  moderate to high wave vector an overdamped capillary mode
this scaling relationship for the frequency as explainedv?=iyk?h/87 and the viscous solution moae=i2vk?.
above. However, when the layer thickness is increased, the Typical spectra of Eq.(14) complemented with Egs.
coupling term proportional ta becomes more important and (17)—(20) at the long wavelength limikh<1 are shown in
it cannot be neglected. Therefore, the effect of the lateralFig. 4(a) for different amplitudes of the module of elasticity
transverse coupling on the undulation and squeezing modésand layer thicknesh=6.28x 10" m or equivalentlykh
[Egs. (17) and (22)] for a finite-thickness layer should be =0.027 with €=0. In Fig. 4a) we show the frequency
taken into account. In Appendix C we provide the correctvariation of the capillary peaks when the bulk shear elasticity
expressions for these modes when the coupling term is inE is increased. The two highest intensity peaks vidithand
corporated into the theory. E, bulk modulus are capillary peaks of the type®

The effect of bending rigidity< in the power spectrum of = yk*h/2p. In the same Fig. @) the more lower intensity
scattered light is demonstrated in Fig. 3. For liquid monolaypeaks E;, E, andEs) correspond to a capillary mode at a
ers with a dynamics described by the bending elastic energimoderate wave vector in the viscous regime. It should be
of deformationK~1kgT—20kgT, the frequency range of observed that these resonance peaks result from a combined
the surface wave is 890 Hz for a Newtonian solvent of effect of surface tension and bulk elasticity. Therefore, its
shear viscosityp,;=6 cP,p=10°> Kg/m®, and layer sizh  nature is more of the second type of capillary wave men-
=2X10"® m, where the wave vector ls=2#/h. The con-  tioned just abovew?=iyk?h/87), and this fact can be ob-
tinuous curve is the power spectrum in the case of a vergerved if we go to a more concentrated solution and thus to a
small value of surface tension and with inclusion of bElk higher value of the amplitude of shear modulus as is shown
=10 N/n? elasticity, 7=7.8x10 ® sec and there is no in- there. It is observed in that plot that these capillary peaks
terfacial e elasticity in the long wavelength limit. In this case become more intense, its linewidth sharpens, and their fre-
the spectral maximum is centered around zero frequencyyuencies shift slightly to a lower value of frequency when
When E=93 N/n?,7=3.5x10"° sec, the intensity is re- is increased as is predicted by the second algebraic relation-

107™CS( k,w)/kBTEO.u.JJ




T
Y
m
(2]
o

(a)

107"CS(k,w)/ kBT Ca.udl
o]

1000 2000

3000 | 4000
wlHz]
— O.4F
~
3 ! (b)
O
[ 0.3]l
= !
£
X o2
3 |
= !
=8 0.l «“
'9 ‘\\ ) N -
~ 2500 5000 7500 10000 12500 15000

wlHz3]

FIG. 4. Structure factoBS(k,w) of the squeezing mode in the

viscous liquid regimewr<<1 and long wavelength limikh<1
with |gh|<1. The wavelength ik=10* m~! and the layer thick-
ness h=6.28<10% m with material parameters p
=10° kg/m®,5s=1 cP,y=72 mN/m and interfacial elasticitg
=0. Figure 4a) with bulk shear elasticitff;=10 N/n?, 7,=7.8
x 1078 sec and observed frequenay,=1.47x10° sec?, E,

=20 N/n?, 7,=1.2x10°° sec, w,=w;, E;=93 N/n?, 73
=3.5x10"° sec, w;=867 sec!, E,=110 N/nf, 7,=3.8
x107% sec, w,=133 sec!, Eg=119 N/nf, 75=4.2

Xx107° sec, andvs=90.8 sec’. In these plots the corresponding

labels for each plot is assigned from top rigkt f to the lower plot
(bottom E5). The plot labeledb) only illustrates the effect ot
=0 (continuous ling €=0.01y (dot-dashefdand e= 0.1y (dashed
line).
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FIG. 5. S(k,w) versusw of squeezing mode in the viscous lig-
uid regime and long wavelength limit. The parameters considered
are k=10 m™1, p=10° kg/m®, 5,=1 cP, y=72 mN/m, e
=0,E=119 N/n?, and r=4.2x107° sec, for different layer
thickness,h;=0.02r/k, h,=0.3w/k h3=0.6r/k and h,=~. The
capillary peak f) is w,=8.5x10° sec’. Increasing thickness
starts from the left side of frequency axes.

gone from the long wavelength limith¢), that is, length
scales larger than the thickness of the layer towards one,
which is a comparable length scale with respedutb,). It

is observed that the capillary peak witk- 0 (line with h, in

Fig. 5 shifts to a higher value of frequency whénis in-
creased lf, and h3), but contrary to the cases in Fig. 4 it
does not broaden but instead becomes sharper. Its intensity
decreases first when the wavelength changes from long down
to moderate; however, when the capillary peak is approached
(short wavelength limjt the power spectrum intensity in-
creases again up to a factor of 2 with respect to the peak of
the initial capillary wave withEs.

If we increase still more the thickness of the layer and go
to the limit of a single fluctuating interfaden—  of a semi-
infinite medium, the wave reaches the capillary maalg
— (k¥ p)*? that has the magnitude.,~8.5x 10° sec !,
where we have used the valuesygfk, andp as given in Fig.

4. This value is in agreement with the one shown in the plot
of Fig. 5 that was, however, obtained with the exact expres-
sion of S(k,w) of Eq. (14) and Eqgs.(17)—(20) in the single

ship given above. It should be noticed also the effect thainterface limit of a semi-infinite medium. It should be
surface elasticity has on the spectra when its magnitude igointed out that the effect of interfacial elasticity is not rel-

increased as is shown in the dashed plots of Fb) for a
fixed Es. Thus, for the moment let us study the effecteof
When € is increased gradually while keeping fixégd, the

evant in this regime of wave vectde~10* m™ ! and fre-
quencywr<1, wheneveikh— . This would be observed
for a finite value of surperficial elasticity, for instance,

capillary peak decreases its intensity and moves to a higher 0.01y, where the capillary peak would have moved to-
frequency and broadens, and starts to develop a quasielasti@rds the frequency value of, as in the case o&=0.

peak located at a lower frequency, Fighy (dot-dasheg
Eventually, for a higher value of, Fig. 4b) (dashed ling

Therefore, the capillary peak is exactly the same as in a
single bare interface of a half-space geometry0.

the quasielastic peak with a very small frequency becomes a Thus we can draw the following important trends: at a
monotonously decaying spectrum that has a small shouldenoderate thickness of the layer such that we are within the
reminiscent of the capillary peak, which has shifted towardgangekh<1, and in the viscous liquid regimer<1, the

a higher value of frequency moving to the rangewaf>1.

layer sustains a quasielastic wave around zero frequency

Let us investigate now the effect of making the layer of themainly due to superficial elasticity, and two capillary waves;
film thicker on the viscous regime7<1. For this purpose one is a function of the surface tension but is independent of

let us consider the parameters of the situation of Figzaée

the elastic modulug while the other is due to both surface

€=0E; only) and increase the thickness of the layer up totension and bulk shear elasticity, and of tywé= yk>h/87
the limit where the two interfaces do not interact, i.e., of aas observed in Fig. 4 for the wave vector and material pa-
single fluctuating monolayer, Fig. 5. In doing so we haverameters considered there, with the first occurring at a higher
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FIG. 6. Structure factos(k'w) of the squeezing mode in the elastic regimew7->1 at the threshold of the Iong Wavelength limit
elastic regimen~>1 and long wavelength limkh<1 with |qh| =~ kh~0.942478 andqﬁhl|~2.3532 versus frequenay. The wave-
<1, versus frequencw. The wavelength i k=10 m™*, and the IengEhS is k=10 m™* and constant layer thicknesh=9.42
constant layer sizé=6.28<10"® m with material parameters < 107° m with material parameters= 103 kgin?, 7=1 sec, 7,
=10° kg/m?, 7=1 sec,7s=1 cP, y=72 mN/m, bulk shear =1 cP,y=72 mN/m bulk shear elasticifg=10" N/m* and two
elasticity E=10’ N/m?, and interfacial elasticite=0. The ob-  Vvalues of interfacial elasticity=0 ande=100y. The graphics with
served elastic peak occurs at,~2Xx10° sec! with |gh| both values ofe merge in the single plot shown here, where the
=0.1088. series of elastic peaks are of the orsler10° sec’™.

to the value|gh|=2.3532 which is already near the ap-

strength of frequency. An increase in the thickness of thgearence of the elastic waves mentioned just above and for
layer has, as a result, the capillary peaks shifting towards ghich |qh|>1 is satisfied. Figure 7 displays a train of sev-
single capillary peak afforded by surface tension only andera| peaks of the power spectrum where, however, neither of
remains as the only sustained mode of surface-roughneggem is of the Rayleigh typew. with |qh|=0.1088 de-
fluctuations and this situation is obtained when we havecriped before. The different peaks shown in the plot of Fig.
reached the limit of a single fluctuating membrane, Fig. 5. 7 are compressional elastic peaks afforded by the bulk elas-

If we return to Fig. 4 of a finite layer thickne$s=6.28 ticity E due to the increase in thickness of the layer and,
X107% m, kh<1 and|gh|<1 with e=0, and consider a therefore, by the availability of more accessible material to
high modulus of elasticitff=10" N/m?, then we will cross  the thermal perturbation and their order can be estimated
over to the extreme elastic gel regimee>1. Thus, the vis-  wjth Eq. (19) with the conditionwr>1, from which results
cosity is frequency-dependent and given by v+Eliwp w2~ (qh)2E/ph? and with the values of Fig. 7 givew
and the dispersion relation, E(L7), predicts[14] a dissipa- ~10f sec!.
tive liquid modew=ik®vs and two propagating modes, a |n the same plot the effect of a finite superficial elasticity
capillary onew?= yk*h/2p and a Rayleigh elastic waweZ  is shown that however, leads to the same spectra; thus, this
=4EK?/p, Fig. 6. In this case the Rayleigh wave has thevalue ofe or even the extreme value case 100y does not
same scaling relation as in the semi-infinite medium case andave an important effect on the spectra. It is possible that this
its magnitude as given by the last relation beforavis=2  train of elastic peaks is not observed in a real situation since
X 10° sec ! with |[gh|=0.1088, a value that coincides with they show only a very tiny intensity even after being amplifi-
the one shown in Fig. 6 obtained with the exact expression ofated several times. However, a careful analysis of the
S(k,w). graphics of Fig. 7 and the set of parameter values at which

In the preceeding paragraph we have studied, in the longhose peaks have occurred suggest that if we increase even
wavelength limit,hk<1 and|gh|<1 and high elastic re- more the thickness of the layer they could display a more
gime, wr>1, the appearence of an elastic Rayleigh waveemphasized effect on the spectra. Thus, we increase still
(Fig. 6). Sinceq is frequency dependerdEq. (19)], it is  more the thickness of the layer. That is, we crossover from
possible to find surface waves in the long wavelength limitthe limit kh<1 with |qh|>1 towards the elastic regime of
that satisfy|qh|>1 (Ref.[14]). The parametefgh| is well  moderate and short wavelendth>1, with |gh|>1. In Fig.
suited to describe a class of sustained surface waves that c8nwe show a typical plot with the same parameter values as
be found in the dynamic description of the surface-roughnesthat in Fig. 7 but for a thicker layer with thickneds
fluctuations on monolayer-covered viscoelastic films of finite=1.27/k and using two different wavelengths; Figag k
thickness. In order to show those elastic modes let us in=10000 m*; and Fig. 8b), k=20000 m . Once again
crease the thickness of the layer starting from the one showthere appears a train of elastic peaks, all of which have a
in the plot of Fig. 6 up to the threshold thickne$s finite width with an enhanced strength of intensity as com-
=0.3x/k of long wavelength that satiskh<<1 and amounts pared to those of Fig. 7. Longer wavelengths separate more



PRE 60 SURFACE HYDRODYNAMICS ON A FREELY STANDING . .. 4327

properties of the solvent were neglected. The interfaces of
the polymer layer were characterized by the elastic constants
(a) v and e. They provided the strength of the corresponding
frequencies of the sustained modes on the layer through an
8 analysis of approximate expressions of the dispersion rela-
| tions. In our present paper we have taken into account the
6} solvent properties and another elastic quantity, the bending
4
2

600000
400000

\/\

rigidity modulus K, which turns out to be relevant in the
dynamics of a wide class of polymeric surfactant monolay-
J ers. In this paper we provide the full expressions of the
power spectrun®(k,w) and their analysis, and of the disper-
sion relations for the two main collective modes, squeezing
and undulatory, which under the limits considered by Sens
et al. [14] reduce to their results for the dispersion relations

g 10000 ®) whenK=0, 7,=0, andps=0.

|
10
8t VI. CONCLUSION
6f We have provided the dispersion relations and power
4} spectra of the squeezing and undulatory modes of a freely
ol standing layer of a viscoelastic material using the two-fluid
_J
2 4 6
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L model. An asymptotic analysis of the dispersion equation
8 provides expressions of the characteristic bending modes,
10° CwCHz Il which consist of propagating and overdamped bending
modes to Rayleigh elastic waves. Figure 3 demostrates that
bulk elastic properties of the polymer layer produces a lower
(c) intense spectrum than the layer constituted by a simple New-
< tonian nonviscoelastic fluid for finit& and negligible sur-
face tension and interfacial elasticity. In the opposite situa-
i tion of zero-bending energi{, we have shown that in the
elastic regime and for a wavelength comparable to the thick-
ness of the layefthat is, short and moderate wavelengths
kh>1 and|qh|>1), the power spectrum displays a series of
peaks associated with elastic waves whose resonance fre-
quencies are due to the bulk shear elastiEitgf the under-
lying polymer network. At these values Bf surface elastic-
10° CwCHz11 ity e produces effectively a negligible effect on the spectra
S(k,w) even at extreme values ef=100y. It is possible to
FIG. 8. Structure factorS(k,w) versus frequency of the  find the same class of elastic peaks in the long wavelength
squeezing mode in the elastic regime>>1, moderate and large rangekh<1, |qh|>1; however, almost all of them are a tiny
wavelength limitkh>1 and|gh|>1 with material parameters  effect. For lower values of the amplitude of bulk elastidiy
=10 kg/n?, 7=1 sec,ps=1 cP, y=72 mN/m, interfacial that is, in the case of low and moderately concentrated poly-
elasticity e=0, and bulk shear elasticifg=10" N/m* at two dif-  mer solutions, surface elasticigystarts to play an important
ferent wavelengths(a) k=10" m™* with layer thicknesskh  ole shifting the magnitude of the present resonance peaks
=1.2m, (b) k=2x10" m™* with layer sizekh=1.27, and(c) kK and producing in all cases studied, a monotonously quasi-
=10" m™1 for the infinitely thick layer case— . In the cases of  g|astic peak around zero frequen@jg. 4). Our general and
(a) and (bzlthe order of the first resonance frequency pealis goyact expressions of the structure factor, E86) and (21),
~10° sec™. reduce to the equivalent properties of a single fluctuating
monolayer of the semi-infinite medium, E@4), in the limit
the resonance frequency peaks as is shown in K. 8his  of noninteracting interfaces of the layér—«. Since our
clearly defined sequence of almost equally spaced peaks isodel of the viscoelastic layer consists of surface-active in-
shown only in the range of layer thickndss 0.2 B/k with  terfaces characterized ky vy, P4, and bending rigidityK,
1<pB=8 for the parameters considered in those plots. Foin the limit (h—o) of an elastic monolayer, our expression
the larger thickness and in the limit of a single coveredof the dispersion relation generalizes those reported previ-
monolayer— o all the peaks diminish its intensity, narrow, ously for the two-fluid model of a single viscoelastic inter-
and merge to the profile of a single quasielastic broad peaface. Thus, Eqs(20), (21), and (24) may be useful to de-
as is shown in Fig. @). This train of peaks displayed just scribe the superficial hydrodynamic properties of a
above in the plot of the power spectruBfk,w), were, in  viscoelastic surfactant membrane where bending rigidity is
fact, predicted by Seret al. (Ref.[14]) for a finite-thickness the most relevant energy scale of the interface, and surface
layer of a homogeneous polymeric liquid where the viscougension is a negligible effect.
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APPENDIX A

We demonstrate in this appendix that E&5) is equiva-
lent to the dispersion relation of Waeg al. (Eq. (46) of Ref.
[12)),

D(w) r 1+ T +(iw+T)“+ws
l1-/1+ 2w 24+ 4/1+ Gl
wy, T w |

(A1)

+w?

wherew, = (yk%/p)*2, w_= (ek3/p)*?, andl' = 2vk?. Using
the above quantities, E¢A1) can be written as

iw K3
D(w)=—4k*? \[ 1+ - o+ (iw+2K) 2+ 77

ek®| yk3 1 1 iw 1 iw
S w2\ TN e TN e
(A2)
Using now the identityg=k+/1+iw/vk? in Eq. (A2),
4.2 k3
D(W) = 2= 4 (iw+20k?) 2+ —
k P
ek®[ vk3 [k—q) q
3 p—wz(—k ) k) (A3

Multiplying both sides of Eq(A3) with —w? results in
—w?D (W)= (—w?+2i vk?w)?

k3 k?

_W2<y_+ €q

p
k? k3

+—(q—k) —,
p p

-4 V2k3Q)
(A4)

which is Eq.(25) with K=0.

APPENDIX B

Here we demonstrate that the Lucassen and Lucasseatz=0, and for the tangential forces the boundary condition

Reynderg19] result is equivalent to Eq25). The general-
ized Lucassen equation reads

Wp .
—T+I7}(k+Q)

ek?®+Kk* yk2+ Kk*

+in(k+Qq)

+[n(k—q)]?=0, (B1)
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We expand this equation and multiply it by the factaor (
—k)w?k, and use the identity— »?(k+q)%+ 7?(k—q)?
= —4kqz?, thus, Eq.(B1) can be written

(q—Kk) ek?(yk?+ Kk k— ek?pw?(q—k)
+ ek®i p(k+q)(q— k)w+ (yk2+ Kk*)i 7kw
X (q+k)(q—k) —izpw(g+k)(q—k)w?
—479%k%qw?(q—k)=0. (B2)

Using now the identities q+k)(q—k)=0%2—k? and g2
—k?=iw/v in Eq. (B2), and dividing this equation by’ we
get, after some algebraic steps,

3 5 2 31,2 3,2
W4_W2( yk3+ Kk N ek q)+ ek®w®  ek’w
p p p p
k? [ Yk3+ KKS
= YT(q—k))—MZkzqwz(k—q):o.

(B3)
Since the term—4k?v?qw?(k—q) = — 4k*1v?w?— 4i vk?w?3
+4k3v2qw? where we used the identity?=k?+iw/v, we
rewrite Eq.(B3) as

K3+ Kk® K
Y n €q

w?— 4i vk2w3 — 412k w2 — WZ(

p p
k2 k3
— 423 |+ S (g-k) =0 (B4)
p p
or
k3+Kk® k2
(— w2+ 2i vk?®w)2—w? L4 5 + < —41%k3q
ek? YK+ KK®
+—(@Q—-Kk|——/|=0, (BS)
p
which is Eq.(25).
APPENDIX C

In order to include into the dispersion relations of the
squeezing and undulatory modes, E¢k7) and (22), the
effect of the lateral-transverse coupling we consider as
new boundary conditions equivalent to Eq$0) and (11);
for the balance force in the normal direction,

0= ¢ Ka4§ PL(h)Sg+ 27 2 xasg
P =Psty 2 Koz =Py(N)dg+2n——+A—3
(CY
reads
P ¢ h
UZXZGW—)\m, ZZiE. (C2

From these boundary conditions, Ed€1) and (C2), the
resulting dispersion relations are for the squeezing mode,
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. . 4ikevaw k)2 hk vyhereDS(k,w) and.D”(k,w) are Eqs(17) and(22} respec-
D (k,w)=D>(k,w) + T tanf = tively. The relaxation functiony that appears irS(k,w)
=(kgT/7w)Im[ x] remains exactly the same as given in
hq hk\] 2w?\k* Egs. (20) and (21) where it is only necessary to replace
x| acoth 5 | —keothf 7 |4 —>—, DS(k,w) by D$(k.w) and D(k,w) by DU(k,w). The limit

(C3) h—o reads

and for the undulatory mode,

4ik®maw  k'A2

hk
DY(k,w)=D"Y(k,w)+ - — cotk(—) . 4ik®vaw  k'\?
M ’ 2 Di'n(k,W)=Dsin(k,W)+(—v——2)(q—k)
at ’_(hq) ct ’_(hk +2W2)\k4 g
anH — | —ktanH — ,
atam s 2 P 2w\ ke o
(c4) T €
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